Reducing Hajós’ coloring conjecture to 4-connected graphs
نویسندگان
چکیده
Hajós conjectured that, for any positive integer k, every graph containing no Kk+1-subdivision is k-colorable. This is true when k ≤ 3, and false when k ≥ 6. Hajós’ conjecture remains open for k = 4, 5. In this paper, we show that any possible counterexample to this conjecture for k = 4 with minimum number of vertices must be 4-connected. This is a step in an attempt to reduce Hajós’ conjecture for k = 4 to the conjecture of Seymour that any 5-connected non-planar graph contains a K5-subdivision. Partially supported by NSF grant DMS–0245230 and NSA grant MDA-904-03-1-0052 Supported by the Fulbright Program and the German National Academic Foundation
منابع مشابه
-λ coloring of graphs and Conjecture Δ ^ 2
For a given graph G, the square of G, denoted by G2, is a graph with the vertex set V(G) such that two vertices are adjacent if and only if the distance of these vertices in G is at most two. A graph G is called squared if there exists some graph H such that G= H2. A function f:V(G) {0,1,2…, k} is called a coloring of G if for every pair of vertices x,yV(G) with d(x,y)=1 we have |f(x)-f(y)|2 an...
متن کاملA note on Fouquet-Vanherpe’s question and Fulkerson conjecture
The excessive index of a bridgeless cubic graph $G$ is the least integer $k$, such that $G$ can be covered by $k$ perfect matchings. An equivalent form of Fulkerson conjecture (due to Berge) is that every bridgeless cubic graph has excessive index at most five. Clearly, Petersen graph is a cyclically 4-edge-connected snark with excessive index at least 5, so Fouquet and Vanherpe as...
متن کاملOn a Coloring Conjecture of Hajós
Hajós conjectured that graphs containing no subdivision of K5 are 4-colorable. It is shown in [15] that if there is a counterexample to this conjecture then any minimum such counterexample must be 4-connected. In this paper, we further show that if G is a minimum counterexample to Hajós’ conjecture and S is a 4-cut in G then G− S has exactly two components. AMS Subject Classification: 05C15, 05...
متن کاملOn Sylvester Colorings of Cubic Graphs
If G and H are two cubic graphs, then an H-coloring of G is a proper edge-coloring f with edges of H , such that for each vertex x of G, there is a vertex y of H with f(∂G(x)) = ∂H(y). If G admits an H-coloring, then we will write H ≺ G. The Petersen coloring conjecture of Jaeger states that for any bridgeless cubic graph G, one has: P ≺ G. The second author has recently introduced the Sylveste...
متن کاملColorful paths for 3-chromatic graphs
In this paper, we prove that every 3-chromatic connected graph, except C7, admits a 3-vertex coloring in which every vertex is the beginning of a 3-chromatic path. It is a special case of a conjecture due to S. Akbari, F. Khaghanpoor, and S. Moazzeni, cited in [P.J. Cameron, Research problems from the BCC22, Discrete Math. 311 (2011), 1074–1083], stating that every connected graph G other than ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004